@Y ARL 72-0028
)  FEBRUARY 1972

Aerospace Research Laboratories

AD V417

INCOMPLETE MULTIVARIATE DESIGNS,
OPTIMAL WITH RESPECT TO FISHER'S
INFORMATION MATRIX

J. N. SRIVASTAV A
M. K. ZAATAR

COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO

#eproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

Sprnagticld. Va 22151

CONTRACT NO. F33615-67-C-1436
PROJECT NO. 7071

.
/D
N
n -%\'S-__i,;.n ] o
Approved for public release; distribution unlimited. L‘ ! "“'. y 1% Ui
‘ \:\ .n.' e
\ \A‘l.;.;4—\ v - :x‘\ -
Y Lg o~
l - o L"

AIR FORCE SYSTEMS COMMAND

United States Alr Force

29




Liode, G
et 1
Lo jea ”
= M
A@
,
€

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




NOTICES

When Governinent drawings, specifications, or other data are used for any purpose other than in
conncction with a definitely related Government procurcment operation, the United States Government
thereby incurs no responsibility nor any obligation whatsocever; and the fact that the Government may
have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is
not to be regarded by implication or otherwise as in any manner licensing the holder or any other
person or corporation, or conveying any rights or permission ti. manufacture, use, or sell any patented
invention that may in any way be related thereto.

Agencies of the Department of Defense, qualified contractors and other
government agencies may obtain copies from the

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

This document has been released to the

CLEARINGHOUSE
U.S. Department of Commerce
Springfield, Virginia 22151

for the sale to the publir.

"

L Technical Documentary Reports should not be returned to Aerospace Rescarch
Laberatories-unlgss return is required by security considerations, contractual obligations or notices on
a specified dacyrgent,

SISTRISUTION/AVALADILITY COUSS

e i




Unclassifjed

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of title, body of abstract and indexing annotation must be entered when tha nverall report is classilied)

' ORIGINATING ACTIVITY (Corporate author) 28. REPORT SECURITY CLASSIFICATION
Department of Statistics Unclassified
Colorado Ftate University 26 GROUP
Fort Collins, Colorado 30521 -2

3 REPORT TITLE

Incomnlete *fultivariate Desirns, Optimal with Resnect to Fisher's
Information Matrix

4 DESCRIPTIVE NOTES (Type of report and inclusive dates)
Tcientific Interim

S AU THORI(S! (First neme, middie initial, last name)

J. N. Srivastava and M. K. Zaatar

é REPORY DATE 78. TOTAL NO OF PAGES 7b. NO. OF REFS
February 1972 26 8
88, CONTRACT OR GRANT NO 94, CRIGINATCR'S REPORY NUMBE RI(S)
F 33015-67-C-1L3¢
b. PROJECT NO 7071-00-12
c. DoD Flement €1102F 9b. OTHER REPORT NO(S) (Any other numbers that may be asslgned
this report)
4. DoD Subelement 681304 ARL 72-0028

10 DISTRIBUTION STATEMENT

Acproved for public release, distribution unlimited

11 SUPPLEMENTARY NOTES '12, SPONSORING MILiTARY ACTIVITY

TECH OTIER Aerospace Research Laboratory (L B)
Wright-Patterson AFB, Ohio L5433

13. ABSTRACT
Consider a n-variate normal ponulation N“(E’X)’ with p known and I unknown. Withou

loss of renerality, we take y = 0. Suppose that we have an incomplete multiresponse
sample, i.e., we have samples available from this ponulation and/or its various
marrinals. Sunpose one is interested in estimatine 7, given that all the correlations
are known,

Consider the Fisher information matrix H, corresponding to the estimation of the

variances o Consider the marginal involving the resnonses i_,i.,...,i, , and suppose
1*°2 k

tt’

that from this marsinal a sample of n(il,i?,...,i ) is drawn. It is then seen that H

is a linear function of the n's. Suppose that thekcost of taking an observation on the
jth response is wo, and that a total amount of money ' is available for the collectiog
of sarmmles. The nroblem considered in this vaner is the following. How to choose the
n's subject to the cost restriction, such that the determinant of H is maximized. A
complete solution is obtained for the case n = 2, When v = 3, some partial results
are obtained, In particular, it is shown that when all the costs are equal, and the

correlations are eaual, then the best desisn is obtained by using a complete sample.

DD .'&“f.,1473 Unclassified

Security Classification




Security Classification

te. LINK A LINK & LINK C
KEY WORDS
ROLE wT ROLE wT ROLE wT
Incomplete Designs
Optimality
‘flultivariate Analysis
Unclassified

“U.S.Government Printing Office: 1972 — 759-085/531 Security Classification




ARL 72-0028

INCOMPLETE MULTIVARIATE DESIGNS,
OPTIMAL WITH RESPECT TO FISHER'S
INFORMATION MATRIX

J. N. SRIVASTAVA AND M. K. ZAATAR
COLORADO STATE UNIVERSITY
FORT COLLINS, COLORADO

FEBRUARY 1972

CONTRACT NO. F33615-67-C-1436
PROJECT NO. 7071

Approved for public release; distribution unlimited.

AEROSPACE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO




FOREWORD

The work on this paper was wholly supported by Contract F 33615-67-
C-1436 of the Aerospace Research Laboratories, Air Force Systems Command
United States Air Force. The work reported herein was accomplished on
Project 7071, "Research in Arplied Mathematies", and was technically moni-
tored by Dr. P. R. Krishnaiah of the Aerospace Research Labs, whose interest

in the present work 1s greatly appreciated.

ii




ABSTRACT

Consider a p-variate normal population NP(E}X)’ with y known and &
unknown. Without loss or generaiity, we take u = 0. Sup,..c that we
have an incomplete multiresponse sample, i.e., we have samples available
from this population and/or its various marginals. Suppose one is
interested in estimating I, given that all the correlations are known.

Consider the Fisher information matrix H{, corresponding t. the
estimation of the variances o__. Consider the marginal involving the

tt

responses 1 ,i2,...,ik, and suppose that from this marginal a sample of

1
n(il,i2,..,ik) is drawn. It is then seen that H is a linear function of
the n's. Suppose that the cost of taking an observation on the jth
response is wo, and that a total amount of money )' is available for the
collection of samples. The p-oblem considered in this paper is the
following. How to choose the n's subject to the cost restriction, such
that the determinant of H is maximized. A complete solution is obtained
for the case p = 2. When p = 3, some partial results are obtained. In
particular, it is shown that when all the costs are equal, and the corre-

lations are equal, then the best design is obtained by using a complete

sample.
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l. Introduction

In most experiments or investigations, usually more than one response
or characteristic is measured on an experimental unit or individual. The
interest very often lies in estimating certain parameters (usually of
the location or scale type) on each response. It iIs well known that, in
general, as the number of units on which a response is observed is in-
creased, the efficiency of the estimate aiso increases. However, in
general, one is fa-ed with financial limitations. In other words,
there is a certain cost wj of measuring the jzﬁ-response on a single unit,
and there is a cost wo of having a unit available for the experiment.
Furthermore, a certain total amount of money (say, 1) is allotted for the
experiment. In this situation, not only the number of observations that
can be taken on any response is bounded, the number of observations on
other responses decreases as the number of observations on a particular
response is increased. This indicates that an overall measure of the
efficiency of the whole multiresponse experiment is desireable. Also,
the number of observations to be taken on the different responses should
be determined so as to maximize the overall efficiency of the whole
experiment. This is an important aspect of the subject of multiresponse
designs.

Certain problems in this field have been studied before. For example,
suppose the interest lies in the estimation of the differences between
the true effects of a set of v treatments on each of a set of p responses.

Thus there will be v - 1 linedrly '..'ependent .omparic.ons for each




response, giving rise to p(v-~1l) estimators. Let K denote the p(v-1l) x
p{v-1) variance matrix of these estimators. In Srivastava and McDonald
(1969), the problem of obtaining the optimal multiresponse design (with
respect to the minimization of tr. K) is considered. This paper is
concerned with the case of randomized block designs. A similar paper
involving cyclic PBIB designs was considered in Srivastava and McDonald
(1970). The first problem under the determinant criterion was considered
in Srivastava and McDonald (1971).

A multirespnnse design problem, posed in a somewhat different fashion

has been considered by Hocking and Smith (1971).

In this paper, we consider a multiresponse design problem when such
parameters are to be estimated. The optimization under the given cost
restriction, is done with respect to maximizing the determinant of the
fixed information matrix corresponding to these parameters.

2. Preliminaries.

Consider the problem of designing an experiment for estimating the
unknown dispersion matrix I = ((ots)), (tys = 1,2,...,p) of a p-variate
normal distribution whose mean vector is assumed to be known and equal
to zero. (This choice of the known value of the mean causes no loss

of generality). The collection of data, for this purpose, could be in

the form of a general incomplete multiresponse sample. This sample is
divided into subsamples, sj (j = L,w,..u = 2P - 1) such that on every
experimental unit in S., exactly the subset R. (where R, = {2..,%.

P o], y j 3 ]l’ 32,
. s }) of 1esponses is measured. Thus u s the number of all non-

J
empty subsets of {1,2,...,p}, and nj is the number of units in Sj' The

subsets Rj are assumed to be ordered in any arbitrary but fixed manner.




We also assume that the elements of Rj are such that 1 g_ljl <2, <...< L, <Pp.
The principal submatrix of I corresnonding to Rj is denoted by Zj.

Tor any response r, we define Ur as the unior of sets Sj the union being

taken over all j such that reRj. Thus, Ur is the set of all units on

which response r (possibly along with other responses) is measured. We

shall also assume a cost restriction of the form mentioned in the intro-

duction, and without loss of generality, label the resronses sich that

by LU, S e S

- P
Our objective is to obtain an optimal set of values of the nj under

1

these cost limitations. By "optimal" we mean the sample should be such
as to maximize the "amount of information'" obtained from the data within
our financial 1limitations.

In this paper, we choose our measure of information to be the
determinant of Fisher's information matrix H. For convenience of
reference, we may state here the definition of H. Suppose in any given
situation, one is interested in estimating a set of parameters 61,..,6m,
and suppose L denotes the likelihood of the sample. Then H = ((hij))
is (mxm), and hij = E {-3210g L/aeiaej}, where L denotes "expectation".
Note that the dispersion matrix V of the estimators is asymptotically
proportional to the inverse of Fisher's information matrix when these
estimators are maximum likelihood estimators, or belong to the class of
asymptotically efficient estimators. Also, a plausible property of the
determinant criterion is the fact that the det. H and det. V are,
respectively, directly and inversely proportional to the volume of the

ellipsoid of concentration. See, for example, Roy, Gnanadesiken and

Srivastava (1971).




A design D, in this study, is a determination of the vector n =

(nl,n

units on which this subset of responses is to b2 measured. The nj's must

satisfy the cost restriction,
(2.1) 1= I (z.)n.,
. ] 3

where Cj = wo + wz. + wl 4.0t wg . Under each design D, the

il j2 Jp;

criterion of optimization is represented by [det. H(D)} = Q(D), say,
where H(D) is the matrix H corresponding to the design D. Thus we are
faced with an optimization problem in which G is the objective function
and (2 . 1) is the constraint. It should be pointed out that the nj's
should also be positive and take on integer values only. However, for
practical ronsiderations, the latter requirement shall be overlooked.

The cost associated with a design D shall be denoted by (D).

Definition 2.1 A design D is said to be at least as good as a design

D', if Q(D) > Q(D') and Y(D) < ¥(D'). Moreover, if any of the two
inequalities becomes strict, then D is said to be better and D' is said
to be inadmissible.

Definition 2.2 A (sub) class C of designs is said to be essentially

complete in the class C', if C € C' and for any D'eC', there exists a
DeC, such that D is as good as D'.

3. The case I = 6A, A known.

Here, we shall assume that the positive number & is the only
unknown, and A is a positive definite matrix. An easy computation then

gives

59 ...,nu), specifying, for each subset of responses, the experimental




u
I Tn.p.
2 3P3
9 =
(3.1) Ho=E (- 2%y o d2l
a6 26
u
Thus we must find n's so as to maximize I n.pj subject to (2.1).
j=1

This is equivalent to maximizing Z*né, subject to Z*(cj/pj)né = 1, where
L# denotes summation over jeJ, where J = {j[pj # 0}. Let j* be a value
of j such that (Cj/pj) attains a minimum (over restriction of j in J) when

%,

j =3 Then clearly, a solution of the problem is: Take nj = 0, if

j # i%, and take Ny = (1/cj*). This clearly leads to

Theovem 3.1 Let C? = (wo + wl +..+¢r); r=1,..,p. Let n* be the size

r
of the sample from the marginal distribution of responses 1,2,..r . Let
" s re ) = MAX £} . . e s
r* be such that (v /Cr*) 1<r<p {r/cr} Then the optimal desigzn is

obtained by taking a sample of size (l/C?*) from the marginal of responses
1,2,..,r* . Clearly, the optimal design is an HM design. Also, it is
easily checked that this HM design reduces to an Sl design if and only
if v_<g* _/(p-1).
b < p_l(p )

4, The case of uncorrelated responses.

In the case of uncorrelated responses, the Fisher's information matrix
H reduces to a diagonal matrix with hft = (2Nt)/Jt2’ (t = 1,2,...4P),

where N_ = I . Our problem is to maximize the objective function

AL
t ]eUt J
Nt’ subject to the cost restriction (2.1), which is now equivalent
1

b
to woNo+ L tht = 1, The following result can then be proved in a way

t=1

parallel to theorem 4.2 in Srivastava and McDonald (1971).

<
"
n =g

t




Theorem 4,1. Let ml,...,mp denote respectively the values of N

which maximizes Q subject to the above cost restriction.

1,---,Np

{a) Let k be the first integer such that

(4.1) (k - 2) (k - Ly, > ¢* s

[3
£t ko % -1

k-1 k - 2°

where C% = wo + wl

the optimal design is an HM design with

+...+wj, and k can take the values 2, 3,..., P. Then

(4.2) moE s =W

(b) If (4.1) does not hold for any value of k(2 < k < p), then

= (k—l)/(pCi‘l), and m, = 1/pwj, (3=k,..,p).

we have the SM model withm, = m, = ... = m_.
1 2 P

5. The case p = 2, and known correlation.

For the case of a bivariate population, let ny and n, be the sizes

of the univariate samples firom the marginals of the first and second
responses, respectively. The size of the bivariate sample will be denoted

by n Also, p will denote the correlation coefficient o._,. The Fisher's

3’ 12

information matrix H is given by

2 2

1 2 -9 1 (¢] ;
5{(2n) + 5 ) " 5o (mg )
(5.1) | ol l-p 172 1-p
" 1 2 1 2 - p
- T (n3 P 2) —--2--(2112 + n3)
12 1l -p 02 1 -~-p
. ]

We proceed now to find the optimum design under the determinant

criterion. We want to choose n, M, and n, so as to maximize !”! or,

3
equivalently,
- 2 .
(5.2) Q= nn, + a(nl + n2)n3 + bn3 , subject to
(5.3) d = nldl + n2d2 +n, o, where

L 4



(5.8) a=(2-p2)/2(1 - p%), b=1/(1 -2, a-= /(v + ¥y *+ 9,)

dl = ("’o + :1;1)/(\0o ty, ¢+ w2), d2 = (wo + w2)/(wo + wl + w2).

The inequalities dl

and b > a > 1, can be easily checked.

£4,,0<4d, 1,024

2

<1, 4;

+d2_>_l,a=b;l,

Theorem 5.1. The sub class C* of HM designs is essentially complete in the

class C of GIM designs.

Proof: The assumption wl §_w2 implies that a design D(nl,n

n, >n

1 2

2,na) in which

is at least as good as the design D'(ng,nl,n3). Consequently,

designs like D' shall be ignored. Thus let DeC. Construct D*(ml,m2,m3)

as follows., Take m, = n

1° 0 T8 My

=0,and m, = n

3 2

+ n,. The design D*

is of the HM type and an equivalent way of constructing it is to measure

the first response on n, + n

1

3

experimental units, then measure the second

response on a subset of these units of size n, + n_.

Q(D#*) = m_m,. + a(m

12

It follows that Q(D*) - Q(D) = (a - l)nln

1

2
+ m2)m3 + bm

2

We also find that y(D) - ¢(D*) = ¥on, > 0.

Thus, we will restrict attention to HM designs only, by taking n

and n_,n, > 0. Our problem is reduced to that of maximizing Q = an

1
subject to 4 = dlnl + Ny n

3

n, = 0, is never optimal.

[(bdl - a)nl

can easily prove

1°"

Now, n

3

3

3

=4d - nld

2 3

= a(nl

We have

2
nz)(n2+ n3) + b(n2 + n3) .

+ (b - a)n22 + 2(b - a)n2n > 0

5320

This completes the proof.

1° and

2 = 0

2
ln3 + bn3 s

> 0. It is obvious here that the choice

hence Q = (dlnl -d)

- bd)}. By considering the roots of this quadratic in n,, one

Theorem 5.2: A necessary and sufficient condition for the SM model to be

optimal is that (wg/ by * wl) < (2 + 02)/(2 - 92). Otherwise the HM design

with n, = d(2bd, - a)/2dl(bdl - a) and n

1 1

one.

3

da / 2(a - bdl), is the optimal

aesn




6. The case p = 3.

Consider a general incomplete sample from a 3-variate normal population.
Let us assume that the variances are unknown, while the (3 x 3) correlation
matrix ( ( G } ) (r,s = 1,2,3) is known and the mean is equal to the zero

vector. For simplicity we shall use the notation: pjk = Oi, where (i,j,k)

e F, and F is the set of (the six) permutations of (1,2,3). Thus this

notation means 023 = 032 = Ol, 012 = 021 = 03, 013 = 031 = Py We find,

after some calculations, that the elements hij of Fisher's information

matrix, in this case, are (for (i,j,k)€F) given by

-2 -
. .. =0, . N, . . . .. = (0,0,
(6.1) hll o, [2nl + a]nlj +an. + bln123], hlj ( 103) (Ckn193 +
+ dknij)’ where
2 2 2 2
a, =25 L b.=14+7P1 L. =13 4. =1 |
i 3 i i 3
1-p. A A 1-p,
i i
3 2
A= |((oij))| = l-iil ;" + 20,004,

are, respectively,

and where ni(i=l,2,3), nji(i#j; i,j =1,2,3) and LIPON

the sample sizes from the corresponding univariate marginals, bivariate

marginals and the parent distribution. Define, for (i,j,k)eF,

3
2
= = = -Hb_ = T \’) .« = - .o
(6.2) mi ci hii’ uk ciojhij, gi w() i? £ =0 r’ fl £ wl

Assume that the total money available for taking samples is 1. Our
objective is to find a determination of n' = (nl,n2,n3,n12,n13,n23,n123)

which maximizes |H| or, equivalently, the quantity Q, where

20 20 2
17273

mu? cmu? o2 ;
H, -m.u My 33 s i

[H| = mom,m, + 2u.u 3 MMy 2

(6.3) Q=0 1273 172




subject to the cost restriction

(6.4)y 1 = glnl+ 8,0, + 404 + fln23 + fzn13 + f3n12 + fn123.

A direct attack on this problem, by way of expanding Q as a cubic in the

7 elements of n, seems to be unwieldy. The subsequent sections will offer

alternative methods of approach.

~

7. The perturbation method.

We start by assuming that the design D(n) is optimal, i.e. for any

other design D+(§f) we have Q(D+) < Q(D), and ¥(D) = w(p*

that Q has a global maximum at the point n determined by D. Let us displace

the point n to the point n + 8. Suppose this results in a displacement

of (ml’mQ’m3’ul’u2’u3) by the increments (51,82,53,61,62,63

The value of Q undergoes the change:

- miui)] + P

k k

(7.1)  Q(n+ &) - Q(n) = % [1/2 ei(mjm o

—u.g) + 6, {p,u
1 13
= Pl + PO’ say

where I* shall always denote cummation over all triplets (i,j,k)eF, and

where PO is a polynomial of €'s and 8's of the third degree and

(7.2) €. =28, +a6,, +a.8, +b.§ 8, =d.86., + c.6
i i i

k 17 j ik i7123° i ik 123°

The sign of Q(n + §) - Q(n) is the same as that of Pl, provided that 8 and

consequently the e€'s and the @'s are such that P_ is negligible compared

0

to P.. By the use of (7.2), the polynomial P_ can be expressed directly

1 1

in terms of ¢ as:

} = 1. This means

), respectively.




3
(7.3) Pl = (1/2)2*[(¢i)6i + cij(akdsi + ak¢j) zrkdk)] + 6123 iil(bi¢i+2rici),

2 sos
. M, - u, T, = . “Mm.u,.
where ¢l mjmk LFD N uku] meu, Because of the cost condition

(6.4), the components of § satisfy

(7.4) gldl + g262 + g36 faé + £,.6., + £.6,_ _ + £ = 0,

3 ¥ 3%10 T T0%13 5103 123

It is interesting to note that the ¢'s and the 1's are the six different

cofactors of the (& x 3) matrix ((gij))’ where gij = oiojhi..

Theorem 7.1: A design D(n) is not optimal if there exists a § such that

D(n + 3§’ is a design, P. is positive and IPOI g_lPl!.

1

Proof: The proof is evident from the preceding development.
This result will be applied to some important special cases.
The SM model. For the SM model we have all the n's equal to zero, except

n = 1/r = m, say. Consequently, for (i,j,k)eF, we also have

2

= m2 - _ 2
¢, =m (bjbk - ¢;7), 1, = (c.ep- bieIm®. Thus

ik

2
= % 8 Q.
(7.5) P, =m T [aiéi + (l/2)(akai + akaj + dkBk) i3 + (1/2)(bjo, +
+ ciBi)6123], where
o, = b.b - c.’, B, = 2(c.c, - b,c,).
i ik i*7i i’k i7i
Let a* denote the coefficient ol 5123 in (7.5), i.e.,

% =
(7.6) a bla1 + b2a2 + b3a3 + clBl + c282 + c383.

10 i

. 4




Substituting in (7.5), the value of 6123 using the cost condition (7.u4),
we get

?
= % - R N
(7.7) Pl (m“/2)T [(2di a gi/f)di + (akui + a o, + dksk a fk/f)Gij]

k]

Invoking Theorem (6.1) and observing that the 8's in (7.7) must be
nonnegative numbers (3_+ 8 is a design) which can be taken sufficiently
small so that ]POI < ]Pll, we obtain

Corollary 7.1: A necessary condition for the Sk model t» be optimal is

that,

+d,8.)/f.).
ii70d

a® > (f) max (2ai/gi, (aiaj tao

(i,j,k)eF

The GIM Model.

Consider the GIM design D with n > 0, and let n denote the coefficient
of 6123 in (7.3), i.e.

(7.8) n = bl¢l + b2¢2 + b3 ¢3 + QTlcl + 212c2 4 2T3C3.

Substituting for 612 from (7.4) in (7.3), we get

3

(7.9) P, = IX[(2¢, - ng./£)8, + (a6, + ak¢j + 21,4, - nfk/f)Gij](l/2)

According to theorem (7.1), a necessary condition for a design D to e

optimal, is that P. be negative. Moreover, since the §'s can be both

1
negative and positive (the n's > 0), their coefficients must vanish. For

example, suppose thatthe coefficient of 63, say, is not zero, then we can

11




select all other §'s to be zero, and choose 63 to have the same sign as
that of its coefficient, thus giving rise 10 a positive value for Pl’ which
implies that Q of (6.3) does not have a maximum at the point n determined
by D. We have established

>O,

Corollary 7.2. A necessary condition for the (GTM) design D(nl

> 0) to be optimal is that all the following hold

>
n2 °"'j;“123
. -
simultaneously

(7.10)  (a) ng, = 2f4, ,(b) nf, = (ai¢j;; a6, + 2Tldl)f.

The conditions (7.10), in addition to the cost restriction (6.4)
form a set of seven equations in seven unknowns. Thus we could (theoretic-
ally) solve for the values of the n's. If a design specifies that some
subset of the n's of size x, say, must be zero, then in (7.10) we would
have (6 - x) equations and x inequalities. Again here, with the cost
restriction, we would have to solve (7 - x) equations for (7 - x) unknowns.
For any design D, this procedure determiiles the optimal values of the
positive n's in terms of the costs wi and the correlation coefficients
0, Any two designs, then, can be compared according to the values of Q
arising from adopting each of them.
The HM model.

A choice of the vector n such that, say, ny > 0, N, > 0, and

LEPN > 0, while the rest of n's are equal to zero, gives rise to an HM

design. From (6.2) we have L 2nl +agn,, bln123’ m, = 2n2 tagn ,t

tDoNyogs My = Dabons Uy = CaDiogs By + Collypgs My = dony, + Gyl o
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From (7.4) we also get the corresponding values of ¢i and T, as

% 2, 2

¢ 7 agbgnyonyag * (byby = ey InlLg,
6% = b (2n. + a.n. dn... + (h.b. - ¢ 2)n?
5 T Palehy tagnin o, 1°3 7 €2 P03
$% = 2a_n.n + {a 2 d 2)n2 + [a (b, +b.) - 2¢.d.In..n + 2b_n.n
3 3"1"%12 3 3 P12 3Py v 5 39340157123 2"1"123
2.2
+ (byby) = eyIng,gs

.'. - - - - 2
= [epdy -~ ageydng, - 2¢ynydny 0 + (epe5 = eb)Inlyg,

. i i 2
15 = (egdy = age dnyon)oa + (cyeg - cpbying g,

P — - 2 —

15 = () = egbydny,g = badgnyony g

The quantity n defined in (7.8), after some simplification, takes on

the value
n = 2(a,b.b. + a.b.b, - 2b_c.d, + 2c.,c.d., - a_.c 2 a.c 2)n n
37273 37173 37373 17273 371 372 127123
2 2 2, 2
+ u(b2b3 - )nln123 + 2a3b3nln12 + b3(a3 - d3 )nl2
2 2 2, 2
+ 3(blb2b3 + 2clc2c3 - blcl - b2c2 - b3c3 )n123.

Arguing as before, one arrives at

Corollary 7.3. A necessary condition for the optimality of an HM

design with n > 0, is the simultaneous realization of

1° P12° M123
the following

(a) ng, = 2f¢l, (b) nf, = (a3¢l + a3¢2 + 2k3d3)f

(c) ng,

|v

2£6,, (&) ngy > 2fb,,

(e) nf2

(f) nfl z_(al¢2 + al¢3 + 2kldl)f.

|v

(a2¢l + a2¢3 + 2k2d2)f,

Again we remark here that (a) and (b) above with the cost restriction

1= g0y * f3n12 + fn123 form a set of three equations from which we

find the values of nys D and n These values should satisfy the

12 123°

inequalities (¢), (d), (e) and (f).
13




8. Designs with constant Q.

Given a design D, can we find a design D* that gives the same value
for the objective function Q as D does, i.e. Q(D*) = Q(D), while the cost
for D* is less than that for D. One simple way of achieving this is to
define D* such that the values of the m's and the u's (see (6.2) ) do not
change. This is equivalent to saying that the element of § satisfy the

following conditions, for (i,j,k) F.

b. 6 =0, 4,6 +c.8 =0,

+ab 1%k t %i%103

i°ik * P1%123
2£8 + Z*(giﬁi + fisjk) <0,

. . §..
(8.1) 261 +a i3

123

Obviously, if such § exists and the design D(n + §) has cost 1, then D(n)
is inadmissible.

From (8.1) we can solve, in terms of § for the rest of the

123°

unknowns and obtain

- -1 _
(8.2) 6, = (24,4))7" (ae.dy + aycds - b.d.d )8,
=A-1[l+o-2-(op/o)-(op/o V18
i SR R i"k"T§777123
§.. =- (c, /46 = [(p,p.p, - 0, 2¥ (L -0, 2)/(0, %1 6. ..
ij k' "k7T123 T FTT1M2"3 T Tk k k - 123

Substituting the above values in the inequality (8.1) and multiplying

both sides by 26162d3 < 0, we obtain

14




% - -
(8.3) {z (g;d;(ayed; + ajesdy - b;d.d,)(1/2) £ie;dsd ] + 2£d,d,d4,38,,, > 0.

Using (6.1), the last inequality is seen to be equivalent to

(8.8) [-(p

2 2 2
1P9P3 /A)(l/pl + l/o2 + l/o3 )

+ (1/20)(3 + p 2 +p 2 32

1 o ) - 1/21¢

+ 0 > 0.

123¢0

By observing that the case p ~ 0, gives rise to a positive value for

1P2P3

the term in brackets in (8.6), and makes (§ ) of the same sign as

1’62’63

6123, and 612,613,623 of a sign opposite to that of 6123, and using a

smail negative value of § 3> We are led to

12

Theorem 8.1. A design D(n) in whi<h =, ,n_,n, and n

22M3 193 are positive, 1s

1

inadmissible if 010203 < 0.

In the following we shall assume that ¢, = p, = p

1 9 = p, say. For this

3

case, we get

(8.6) a; Ta=(2-00),8, 28=14+(1-0°)s,

Theorem 8.2. If wl < w2 and Py = P, = Py, then we must have either

2

ny; 2 ny, O Ny, 2

1 13 __n23, or both .

Proof: Suppose the theorem is not true, and let D(n) be a design in which

n, <n

<
1 and Ny <N

23° Construct the design D*(n*) where n¥* = (n2,nl,

). 1t follows the ¥(D) - Y(D¥*) = (w2 - 'Pl)(n2 - nl) > 0,

which means that D% costs less than, or as much as D. Now we shall compare

2

R R PR E R SR D)
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Q(D) with Q(D*). Let n, -n; =6 >0 and Ny = Dy = 8> 0. We find
th = % = - X = % = =
at m m + 26, m3 m, 26, 4 Hys W3 My and 2 Mo It can ,

easily be verified that

Q(D*) - Q(D) = 268" {a[2n3 + a(n13 N, ) + bn

1}

103°1- d[d(n13 +

+ n23) + 2cn123

Thus Q(D*) - Q(D) is > 0 if and only if 2an, + a2(n + n23) + abn

3 13 123

2
> d (n13 + n23) + 2dcn12 From (8.6) we sce that a > 1 + |d| and

3
b>1+ lcl ,» which implies that the preceding inequality always holds,
which in turn implies that Q(D#%*) > Q(D). This completes the proof.

9. The case of equal costs and correlation coefficients.

In this section we study the case where for all i, we have wi =¥ and
Di = P, We first state a result for later use.

Lemma 9.1. Consider a space S of dimension p(p + 1)/2, whose points

are non-negative definite symmetric matrices of size (p x p). Let BeS

1
and let f(B) = lB|p. Then f is a concave function on S.
Proof: See, for example, Minc and Marcus (1964, p. 115).
a

Given BeS, and/permutation @ of the elements {1,2,...,p}, let a(B)

be a matrix obtained by permuting rows and columns of B (the same permuta-

tion for rows as for columns). We have |a (B)| = |B|. Let B* = E%—- ali aa(B).

Lemma 9.2. We have [B*I :_IBI.

Proof: By Lemma 9.1, and the definition of concave function, we get
1 1 1 1

D 1 £ D 1 L D 1 . D
| B#|P *|5Tan aa(B)lp 257 a1l o a(B)|P = 5T P 8P, or

|B%| > |B].

16




), construct

Now, for any design D(n

1209203205 320039 53

D*(vl,vl,vl,vQ,v ), where v. = (n, + n_ + n3)/3, v. = (n.. +n.. +

1 1 2 2 12 13
+ n23)/3. Because of equal costs we have y(D®) = 3(mo + w)vl + B(wo + 211;)\)2 +

2°V2°"173

(wo + Sw)le = (wo + w)(nl + 0

3 5t n3) + (wo + 2¢)(nl2 tnygt n23) +

(wo + 3111)r112 =y (D). And because of equal correlation coefficients we

3
1 i S =% = M = S o= us o=

can easily find that m¥ = m% = m¥ (ml +my + m3)/3, and ug = ug
u§ = (ul tou, t u3)/3. Given any design D, let M be the (3 x 3) matrix

.. i .. = m, = = d =y, i i
((ml])), with Moo S M, M, = Wy Mg =Y, and my = It is o:v1ous
that Q(D) = |M| . Tt can also be easily checked that M% = 5%—- Loa(M).

—

From Lemma 9.1, it follows that [M%| > [M[, or Q(D*) > Q(D). We have
established
Theorem 9.1. Consider the case of equal costs and correlations. Given any

design D(nl,ng,n ), the design D*(vl )

3°M12°013°M23°M1 03 SRR SRS T DL

is at least as good as D, where v, = (nl + n, t n3)/3, and v, = (n12 +

gt n23)/3.

Remark: The extension of this result to general p is immediate.
Theorem 9.2: In the case of equal correlations, a design in which
nl,n2,n3,n123 > 0, 1s 1inadmissible.

Proof: We shall follow the approach of keeping Q fixed and reducing the
cost described in section 8. From(g8M) we find that the coefficient of wo

is (1 - p)/(1 + 20). The fact A > 0 implies that p > -1/2, which in turn

implies that the coefficient of wo is always positive., Thus we can take

Formulas (8.5) also become

51 = 62 = 63 = (1/1 + 20)6123, 612 = 513 = 623 = ~(1 +p/1 + 2p)6123

17




12 <S13

The proof is completed by

This shows that 61,6

and 63 are of the same sign as 6123, while &

2

and 623 have a sign opposite to that of 6123.

continuing a@s in theorem 8.1.

Corrollary 9.1. In the case of equal costs and equal ccrrelations, a

design in which both v, and v, are positive is inadmissible, where

3
vl = n1 = n2 = n3, and nl?3 = v3.
Preof: Use theorems 9.1 and 9.2.
Lemma 9.3: In the case PR P p(i = 1,2,3), the condition v, =0
—_ i
implies that the optimal design must have v, = 0, and the SM model is
optimal.
. . . 3 3 2
Proof: Let LIPY = Vg Our object is to maximize O = m  + 2u° - 3my~ =
= (m - )% (m+ 2), subject to 1 = 3(b_ + 20) v, + (Y. + 30)v. = xm +
0 2 0 3 1
XM, say where m = 2av,, + b\)3 and wu= va T ov,. Solving for (v2,v3)
we find
-
Vzw_ 1 [c b | m
9 2ac - bd
L3 L-d 2a u
Hence

b
[t}

[(3c - d)wo + (6c - 3d)yp]/(2ac - bd),

X
]

[(2a - 3b)wo + 6(a - b)pl/(2ac - bd).

Now, we have

3¢c - d = -02(2 +0)/(1 - 02)(1 + 2pY,




2 2.
2¢ - d = -p2/(1 + 20)(1 - %),

2a - 3b = 2[(1 + p)2 = p°1/(L - p2)(1 + 20),
a-=b = —02/(1 - 02)(1 + 20),

2ac - hd = 20°/(1 - p2)(1 + 20).

Hence
2 0

3 ?
= - m) é = + -
Now u (1 X. ,/Xz, and hence O(m) (l/XQ) [(X2 X_m 11

[\x2 - 2xl)m + 2]. This 1s a cubic polynomial in m, with coefficient of
m haviig the same sign as (x2 - 2xl)(x,),xl being non-negative). Put

5
Ky = 2%y F [(1 -0 )1+ 20)/92]w0 > 0. The equation Q(m) = 0, has a

double root m given by m_ = [l(xl + x2)] > 0 (Xl’x° > 0). Also, it has

0
2 single root m' = [2/(2x1 - %01 <0,

In the plane (v2,v ), the cost constraint restricts the set in which

3
ve want to maximize Q, to the line segment between the two points,

fl/(3¢0 + 6¢), 0] and [0, 1/(‘11O + 3¥)). This line sepment is transformed
to a line segment whose proiection on the m-axis is the interval (m', m")

where m' = a/(3/2\l}n + 30), m' = b/(:b0 + 3Y).

Now a < b, which implien that m' < m". At this stape, we would like to

show that m' is larger than tle value of the double root M. Now My =
L

2 . . .
1/0(1/2)¥(2 + p)wo + ({1 + )Y v - oY, + a/2¢1. Since a > 1, our obiect.ve

n
will Le accomplished if we show that (1/2)(2 + p) + ( (1 + O)/O)2 - p - 3/2
2,2 ) > 2
>0, 0or (L +0) /0" = (1 +0)/2 = (1 +0)2+ 20 -p" V(207 =F(2 + p)
2 .
(1 + 20 +1 - 92)/(70‘)] > 0. This however, is always true. Thus 0, plotted

as a function of m, is tangent to the m ax's at m_, and Is a monotone

N

increasing function of m for m > mo. We conclude that @ achieves its
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restricted maximum at the point m" = b/(wo + 3¢), for which u" = c/(wo +
3y). The inverse image of the point (m", u") in the (v2,v3) plane is the
roint [0, l/(wo + 3¥)]. Thus the SM design is the optimal one as the
lemma states.

Lemma 3.4: In the case of equal costs and correlations, a design in which

vy T 0, cannot te optimal.
Proof: Assume that D(vl,vl,vl,vz,vQ,vQ,v3) is an optimal design in which
vy = 0. We will proceed to determine the exact values of vy and v,. We

shall also adhere to the same scheme and notation as in the proof of

2
Lemma 3.3. In the presentcase, we want to maximize 0 = (m -u)"(m + 2u),
subject to 1 = 3(!1/O + W)Vl + 3(U/0 + 2¢)v2 SIRTLUR IR P where m =

2v) + 2av,, u = dv2. We find that X, * (3/2)(lbO + ¢) > 0, and that Xy =
3(1 - a)wo/d + 3(2 - ay/d = 3¢0/02 + 3P > 0. The coefficient of the cubic
term in 0(m) has the same sign as Xy = 2xl which is equal to (3/02) Vo "

3, 2 0. The equation Q(m) = 0 has a double root m, = [l/(xl + x2)] > 0,
and a single root m' = [2/(2xl - xQ)] < 0. The line segment in the
(vl,vz) plane dictated by the cost restriction is transformed inteo a

line segment whose projection on the m-axis in the (m,u) plane is the
interval (m',m"), where m' = [2/(3¢0 + 3¢)] and m" = [2a/(3\bO + 8¥)7.

The fact a - 2 = [(2 - 02)/(1 - 02)] -2 =p 2/(l - 02) > 0, implies that
m' < m'". The double root m, = [l/(xl + %01 = 1/030,(2/2 + 1/0°)

+ (9/2)0] < 1/[w0(3/2) + (3/2)03 = m'. All this leads to the conclusion

that Q(m) achieves its restricted maximum at m" = [2a/(3¢0 + 8y)1l,
whose inverse image in the (vl,vz) plane is the point 2 = 0 and
be

v, = l/(3wO + AY). Thus the design D which was assumed to/optimal and

20
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had Va = 0, must also have vl = 0 and v, = l/(3w0 + 6Y) > 0. But in

Lemma 9.3 we saw that if v, ® 0 then the optimal design must have
v, = 0. This leads to a contradiction and the proof is complete.
Theorem 9.3: 1In the case of equal costs and equal correlations, the
SM design is optimal.

Proof: This follows by using successively theorem 3.1, corollary 9.1,

and lemmas 9.9 and 9.3.

21
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